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Abstract. A partially connected Hopfield neural network model is studied under the 
restriction that w, the ratio of connections per site to the size of the system, remains finite 
as the size N + with the connection structure at each site being the same. The replica 
symmetric mean field theory equations for the order parameters are derived. The zero- 
temperature forms of these equations are then solved numerically for a few different ‘local’ 
connectivity architectures showing phase transitions at different critical storage ratios, a,, 
where the states which we are trying to store in the network become discontinuously 
unstable. We show that the information capacity per connection improves for partially 
connected systems. 

1. Introduction 

In the physics community over the past few years there has been a lot of research 
carried out on neural networks (Wallace 1985, Amit er al 1985a, b, 1987a, b, Crisanti 
et a1 1986, Sompolinsky 1986, 1987, Bruce et al 1987). The main stimulus for this 
work was when Hopfield (1982) formulated the Hamiltonian for a type of network 
that had been studied in one form or another as far back as McCulloch and Pitts 
(1943) and Hebb (1949). Physicists then realised it was a generalisation of the infinite- 
range spin glass studied by Sherrington and Kirkpatrick (1975) and could be studied 
with the same theoretical techniques. So far the Hopfield model has only been studied 
in its fully connected and randomly diluted form (Sompolinsky 1986, Derrida er a1 
1987, Kanter 1987, Kanter and Sompolinsky 1987). 

There are several motivations for studying more structured systems. Fully or 
randomly connected systems require long-range connections and are therefore difficult 
to build and have slower communication times between neurons than a system with 
more compact local connectivity. Correlations in real problems are likely to be local 
also. Building networks with structured neighbourhoods would be much simpler and 
take up less space than a fully connected network. They would be more useful than 
fully connected networks provided the loss of storage capacity due to loss of connections 
does not outweigh these factors. In biological systems, neurons have some topology 
of neighbourhood connectivity embedded in three-dimensional space which is more 
local than random or fully connected systems. The correlation between the brain and 
recurrent networks of which Hopfield’s is only one example is discussed with references 
by Gardner-Medwin (1976). 

The N neurons in this model can take values 1 or -1 as in the model studied by 
Amit et a1 (1985a, b) and the connection strengths are defined by 

i # j  T,, = 0 (1) 
1 p  

T , , = x  c D,5?5,” 
U = ]  
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where p is the number of nominated configurations (6: = i l } ,  i = 1, . . . , N, to be stored 
and N is the size of the system. D is a symmetric matrix which defines the connection 
architecture, having a 1 or 0 at position i, j depending on whether site i is connected 
to site j or not. In this paper we will only consider models where the connection 
architecture at each site is the same; thus we can define the connectivity 
network w to be: 

N 

= ( c DJN-1  V i .  
j = l  

In order to perform the mean field theory calculations w is kept finite in 
N + m .  

ratio of the 

(2) 

the limit as 

2. Mean field theory 

We calculate the free energy using the replica symmetric method employed by Sherring- 
ton and Kirkpatrick (1986) for infinite-range spin glasses. The average free energy per 
spin is then given by: 

- 1  

where (( )) represents averaging over the quenched distribution of the 6 and ( ) will be 
used to represent the thermal average. 

The partition function of n (labelled by p = 1,2, . . . , n )  replicas is then 

The i p p n  term cqmes from the i = j  term and we therefore set Di, = 1. The sites are 
decoupled by introducing variables mr, for each nominated configuration p, each 
replica p and each site i. The same procedure as Amit er al (1987a) is then followed 
by splitting the sum over p configurations into two parts corresponding to a finite set 
of s patterns having macroscopic overlap with the nominated configurations and an 
infinite set with microscopic overlap. The variables qf' and rf" are then introduced 
to allow us to do the integrals over the infinite set of configurations with microscopic 
overlap. We then have for the partition function: 

((Z")) = n dm;, n dq?" drfp 
i, p > o  

where p and (T are replica indices and range from 1, .  . . , n, X v  is over the finite set of 
s patterns, (Y = p /  N is the storage ratio and Q is a matrix defined, Qp" = qr"p # U, 
Qpp = 1. 
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As N + 00 the integral is dominated by its saddle point. The following equations 
for the physical meaning of the order parameters are determined from the saddle point: 

We will now look at the possible choices of D, in more detail. If we consider the 
neurons to be sitting at sites on a hypercubic lattice then in the limit N + 00 we can 
think of the lattice as being continuous with a neuron sitting at each point. For any 
neuron the other neurons connected to it will define a shape or shapes on the lattice. 
We will henceforth refer to this as the connection space of that neuron. If this 
connection space was chosen to be the same at every site, it is reasonable to expect 
that site-independent solutions for the order parameters will exist. In this paper only 
site-independent solutions will be considered. For example if we had chosen D to be 
structured with one neuron having many more connections to it than any other we 
would expect mii  to always depend on i. Therefore for site-independent solutions we 
can set: 

The finite sum of s condensed patterns self-averages (Amit et a1 1985a) and taking 
the limit as n + 0 we obtain the replica symmetric equation for the free energy per spin: 

If we rescale some of the parameters, i.e. m y  + wm", r + wr and a + W Q ,  then the order 
parameters regain the same form as for a fully connected network. We now have from 
the saddle point the following equations for the order parameters: 

(9) 
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The physical meaning of these order parameters is then from ( 6 ) :  

1 " 
a p = s + 1  

r = -  1 (((mw)2)). 

Thus m y  measures the correlations of the states of the system with the nominated 
configurations and q is the Edwards-Anderson (1975) order parameter. a is now a 
measure of the storage per connection and is defined as 

P 
wN 

a=-* 

3. Zero-temperature mean field equations 

We now look at the zero-temperature limit corresponding to p +CO. We assume that 
r can be expanded in p D (  1 - q ) /  N. This expansion was found to be valid when the 
mean field equations were solved numerically except for random connectivity in the 
limit w + 0 when the sum can be done analytically (see § 4 and the appendix). The 
mean field equations for the zero-temperature model for states with a single non- 
vanishing overlap are then: 

m 
Jcyr 

m=2erf-  

q = l  

c = pw( 1 - q )  

ak(  w) = w Tr( 5) k+2. 
Thus the mean field equations for m, q and C have the same form as for a fully 
connected network and only ak explicitly contains information about the connection 
architecture of the system. The solutions of these equations yield the storage capacity 
and accuracy of storage of a network with architecture specified by D. For a given 
choice of D with the required restrictions we find varying values of a, above which 
no storage takes place. With ak ( w )  = 1 for all k we recover the order parameter equation 
r = (1  - C)-2 for the fully connected model (Amit et al 1987a). With ak( w) = w for all 
k corresponding to random connectivity we obtain r = 1 + w[( 1 - C-* - 11 which is the 
same result Sompolinsky (1986) obtained by a different route for a randomly diluted 
system. The above equations were solved for hypercubic lattices of neurons with the 
connection space of each neuron being a hypercube of neurons centred on that neuron. 
This, for example in two dimensions, would give us a square lattice of neurons with 
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each neuron connected to a square of neurons about it. It was found that for 
dimensionality higher than 16 the behaviour was very close to that of a randomly 
connected system. The results presented here will be for dimensions d = 1 , 2 , 3 , 4 , 8  
and randomly connected which will be referred to as the d =OO model. The results 
for a fully connected model ( w  = 1 )  will also be presented for comparison. We will 
now look at the form of ak(W) in more detail which, from ( 1 3 ) ,  is 

N 

S 
The sum S contains N k + *  terms, each of which can take the value one or zero. A term 
has value one if a neuron i, is connected in a loop of k + 2 connections back to itself 
through neurons i2 to i c + 2 .  Thus S /  Nk+' is the probability that k + 2  neurons chosen 
at random are connected together in a loop where S contains all the possible ways of 
choosing the k + 2  neurons from the total set of N neurons. The less likely a loop is 
complete the lower the value of ak(W) and the correspondingly higher the value of 
CY,. Hence random connectivity is the best choice of connection architecture for 
maximising a, since, for a given w this minimises ak(W). This is not the whole story, 
however, as m decreases as a, increases but this will be discussed in more detail later. 
For a discussion of the numerical results for ak(W) see the appendix. 

3.1. Results 

Numerical solutions of ( 1 2 )  with single non-vanishing overlap yields a family of curves 
of a against m. A few of these curves for different architecture and connectivity ratio 
are plotted in figure 1 .  The maximum values give a, above which m = 0 is the only 
solution. An important property of these curves is that the higher the dimensionality 
of the connectivity and the smaller w the higher the value of a is for a given m and 

I , , , , , ,  c 
0 0.2 0 . 4  0.6 0.6 1 .o 

in 

Figure 1. a against m for some different connection architectures given by the solutions 
of (12). 
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Figure 2. Critical values of the order parameters a and m are plotted against w, the 
connectivity ratio. On the left and bottom axes are plotted a,  against w for different 
hypercubic connection spaces. The curves are, from bottom to top, w = 1, d = 1 , 2 , 3 , 4 , 8 ,  m. 
Here w = 1 represents a fully connected network and d = cc a randomly connected network. 
On the right-hand and upper axes m, is plotted against w where the curves are, from top 
to bottom, w = 1, d = 1 ,2 ,3 ,4 ,8 ,03 .  

hence the higher the storage capacity. Figure 2 shows the critical values a, and m, 
associated with the phase transitions for different hypercubic connection spaces. From 
these graphs we can see how a, is always constrained to lie between 0.138 for w = 1 
and 2 /  7~ ( = 0.637) for d = CO as w + 0. For higher dimensionality of connectivity where 
the highest values of a, are obtained m, holds up very well as w decreases but falls 
off sharply as w approaches zero. We can expand the order parameter equations for 
small w giving: 

.,-( 2 1 -22/3 3 w l / 3 )  

7T 

m c = ( 7 )  432w ’ 

Numerical simulations and theoretical calculations on a fully connected network with 
one broken replica symmetry by Crisanti et a1 (1986) suggested that the effect of replica 
symmetry breaking is to increase a, and also to increase the accuracy of storage. This 
increase is quite small with a, increasing from 0.138 to 0.145 and it is expected that 
a similar effect will be found in partially connected systems if m is close to one. 

4. Information content 

If we wish to compare the information stored in networks with different architectures 
we must take into account not only the number of patterns stored but also the accuracy 
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Figure 3. This plot has the same layout as figure 2 but shows the values of a and m giving 
maximum information storage as defined by (15).  
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Figure 4. The values of maximum information storage as defined by ( 1 5 )  against w, the 
connectivity ratio for different hypercubic connection architectures. The curves are, from 
bottom to top, w = 1, d = 1 , 2 , 3 , 4 , 8 ,  a. 
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with which they are stored. For example even though with a randomly connected 
network we can achieve an a,  of 2/ 7~ as w + 0 we also find m + 0 so there is no 
information stored in the network. Amit et a1 (1987b) derived equations for the 
information stored in a network. The basic idea of this is that the information content 
of an N-bit vector equals the entropy associated with all the possible ways of choosing 
an N-bit vector. Thus the information content of an N-bit vector is N ln2. The 
information lost when the vector is not fully known is then the In of the number of 
ways of choosing this N-bit vector with a certain fraction of bits wrong and this must 
be subtracted from N In 2. This then gives for a measure of information per connection: 

(15) 
a 

I(cyj=- [(1+ m )  l n ( l+  m)+ (1 - m )  ln(1- m)] 
2 In 2 

which is normalised so that when m = 1, I ( a )  = cy. Figure 3 shows the values of cy and 
m giving the maximum values of I(cyj. It can be seen clearly from this how it pays 
to relax a below a,, particularly for small w, to increase information storage. Figure 
4 shows the maximum values of Z ( a )  for the different architectures studied showing 
that, as w + O ,  the best results are obtained for information storage with random 
connectivity having the highest storage capacity. 

5. Discussion 

This paper has shown that partially connected networks have better storage per 
connection than fully connected networks, the storage increasing the more sparse and 
random the connections are. If we consider the resource requirements for these 
networks we can see that a partially connected system requires many more neural units 
to have any significant storage over a fully connected system. It is when we consider 
restrictions of space and communication times that the major advantages of a partially 
connected system are seen. In the ‘neural chips’ which have been built so far (Jackel 
et a1 1986), and also in the brain, the neural units occupy negligible space compared 
to the connections. Therefore a partially connected network, particularly with some 
form of local connectivity would be the most efficient use of space, reduce communica- 
tion times and increase storage capacity per connection as well. 

There are many other possible areas of research in partially connected networks 
which have as yet not been studied. Firstly the differences in size of basins of attraction 
for different architectures could be studied by a similar method to that followed by 
Forrest (1988) for the fully connected model. We would expect the basins of attraction 
for the stored states to be larger due to the less crowded nature of the phase space. 
The extent to which these results extend to Hopfield-type networks with other learning 
algorithms (Wallace 1985, Bruce et a1 1986, Gardner et a1 1987) which improve on 
the basic Hebb rule used in this paper could also be studied. Compared with complete 
connectivity, random dilution (Gardner 1988b) improves storage per connection for 
the perceptron learning algorithms of Gardner (1988a), Krauth and MCzard (1987) 
and Forrest (1987). The ability of partially connected networks to store information 
with short-range correlation would also be worth investigating particularly if the 
connection range is chosen to be of a similar range to the correlations. Detailed studies 
of other types of neural network models could determine whether the results presented 
in this paper are valid beyond Hopfield networks. Do all partially connected systems 
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have improved properties if more neural units are used with the same numbers of 
connections? 
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Appendix 

We wish to calculate ak(  w )  (equation (13)) in the limit as N + CO. In order to illustrate 
the method of calculating it we will work, for simplicity, with a two-dimensional system 
but the method extends easily to any dimension. Let a square of side with cyclic 
boundary conditions represent the lattice of neurons. Then each neuron which is 
represented by a point has a connection space of a square of side 1 around it. The 
first step is then to choose a point i l  which can be any point on the lattice (all points 
are equivalent due to cyclic boundary conditions) and then randomly choose a point 
iz in the connection space around i l  . We continue this process for k + 1 steps until 
we reach the point ik+2 then a k ( w )  is the probability that the final point is in the 
connection space of the initial point i l  . At each step because we only choose a point 
in the connection space of the previous point rather than a random point, we introduce 
a factor 1/ w into the probability that sites are connected. The w - ( ~ + ' )  factor in ak(  w )  
comes from the k + 1 steps. Therefore the calculation of ak(  w )  is reduced to the 
probability that a bounded random walk of k + 1 steps ends in the connection space 
of the starting point. Thus, we are calculating the traces of powers of the connectivity 
matrix D for a system with size of the order of the inverse of the precision of the 
computer used. The calculations of the ak(  w )  were carried out on the ICL Distributed 
Array Processor machine (DAP) which is a SIMD machine with 4096 bit processors?. 
On this computer about a quarter of a million random steps plus the calculation of 
ak(  w )  all in double precision could be carried out per second. There were three main 
possible sources of error in this calculation but these were overcome in the following 
way. 

Firstly, by calculating a k ( w )  from about two million random walks the standard 
deviation was reduced to a negligible size. Secondly, the matrix we are working with 
is of finite size but for certain values of a , ( w )  we can analytically calculate it with the 
restriction that we have hypercubic connection spaces in n dimensions. Specifically 
when 

w < (3," a t ( w )  = (a).. (Al)  
The numerical results for a l ( w )  were found to agree to within about O.0lo/~ with the 
theoretical results. Finally the number of terms required in the series was very depen- 
dent upon the value of C. If C was large, which occurred with high dimensionality 

+The  DAP is now manufactured by AMT Ltd and has 1024 processors but a clock cycle approximately 
twice as fast as the 4096 DAP. 
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and low w, more terms were needed. As the number of steps in the random walk tends 
to infinity the final position is unrelated to the starting position. Thus a k ( w ) +  w as 
k + a .  Therefore when C is large we calculate enough terms in the sequence until 
ak( w )  = w and then add in a correction term corresponding to summing the remaining 
terms in the sequence with ak(  w )  set to w. It was found in all the models studied that 
no more than twenty terms were needed to evaluate the sequence very accurately. 
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